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The following is quoted from Dr. Burnet's article:
"Virulence is an inheritable character-from the point of view of medicine it is the most im-

portant character of all, and as such worthy of close genetic study. I am rather sorry that, for
understandable reasons, very little refined genetic study has yet been made of the phenomena of
bacterial virulence. It might be a happy thought if someone switched from E. coli B and K-12 to
pathogenic strains of S. pullorum or gallinarum which can readily be tested for pathogenicity.... "
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We shall sketch a proof of the following theorem:'
THEOREM 1. Let G be a group of finite even order. If the 2-Sylow group P of G is

a quaternion group (ordinary or generalized), then G is not simple.
Proof: If P has order 2n, it can be generated by two elements a and /3 with

2n-1 #2 C,~2n-2!1a8 =1 1, /2 = ag~2 , / = a

The element 1A = a2n-2 is the only element of order 2 in P and hence all elements of
order 2 in G are conjugate to jA in G. Let xi = 1, X2 ... IXk denote the irreducible
characters of G and set xi = xi (1). If o- is an element of G of even order, it can be
shown without difficulty2 that

k

E X((a)/xi = 0. (1)

Let ir F6 1 be a fixed element of P and let p be an element of odd order of the
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centralizer CQ(r) of 7r. Applying the theory of modular character for the prime p =
2, we have

Xi(7rP) = E dJidj(p) (2)

where the dijv are the decomposition numbers of G for p = 2 and where s1t = 1,
P2', (3T ,- . . are the irreducible modular characters of C(Xr) for p = 2. On sub-
stituting (2) in (1) for o = 7rp and using the linear independence of the so7', we ob-
tain

EX,(M)2 dij/xi = O (j = 1,2,...). (3)
i

Assume first that P is a generalized quaternion group, n > 3. We let 7r range
over the elements of { a } of orders 2 -1 and 2n-2. It can be seen that there exists a
linear combination of the corresponding equations (3) with j = 1 of the form

E xi(A)2tz/xi = 0 (4)
i

such that the ti are rational integers, ti = 1, and

E tS 2 = 3. (5)
i

It follows from the properties of the decomposition3 numbers that

(a) E taxi = 0; (b) E tjxj(,u) = 0. (6)
i i

Because of (5), only three of the ti are different from 0. On combining (4) and (6),
we can deduce xi(MA) = xi(l) for these three values of i. Hence 1A belongs to the
kernels of the corresponding representations and G cannot be simple.

If P is the ordinary quaternion group, the argument is more complicated. We
may assume that G does not have a normal subgroup of index 2. By the principal
block of characters of a group, we mean the block which contains the principal
character Xl = 1 (for the given prime p, here p = 2). We take 7r = a and 7r = 1A
choosing for spj7 the irreducible modular characters of the principal block of C(X).
For r = a, we have only (p1 = 1 while for 7r = , we have three characters Spj7. This
gives us four equations (3). In addition, we use (2) and the properties of the de-
composition numbers, in particular, the orthogonality relations.3 If the charac-
ters xi are taken in a suitable order, it can be shown that there exist signs 61 = 1.
52 = i 1, 3 = A 1,.Y. . such that the following relations hold:

(a) The equations (4) and (6) with ti = S for 1 < i < 4 and ti = 0 for i > 4.

(b) The equations (4) and (6a) in the following three cases:

1) tl = 61, t4 = - 64, t6 = 66, t7 = 57, all other ti = 0;
2) t2 = 62,t4 = -4, t5 = 65, t7 = 67, all other ti = 0;
3) t3 = 63, t4 = -a4, t5 = 65, t6 = 6, all other ti = 0;

(C) 65X5(#A) = 62X2(/#) + 83X3(8A), 66x6(#) = 1X1(,.) + 63X3(/8L), 87X7(/#) = alXl(M) +
62X2(p).
An elementary, but somewhat messy, computation allows to deduce X2(/#) = X.

Again, G cannot be simple.



VOL. 45, 1959 MATHEMATICS: L. P. EISENHART 1759

A more detailed discussion of the decomposition numbers leads to the following
refinement of Theorem 1:
THEOREM 2. Let G be a finite group whose 2-Sylow group is a quaternion group

(ordinary or generalized). If H is the unique maximal normal subgroup of odd order,
then G/H has a center of order 2.
An example is given by the extended icosahedral group of order 120.
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the extension to the case that P is a generalized quaternion group.

2 Cf. Brauer, R., and K. A. Fowler, Annals of Mathematics, 62, 565-583 (1955), in particular,
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3 For the results used here, cf. Brauer, R., Annals of Mathematics, 42, 926-935 (1941); these
PROCEEDINGS, 32, 215-219 (1946).
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1. This paper deals with a space of four dimensions V4 of coordinates xi as i
takes the values 1 to 4. The geometry of the space is based in part on a set of
asymmetric coefficients of connection Fk in coordinates xi which are related to the
coefficients ra in the coordinates x'a by the equations

Xrc k+ FjXfaX, = Pai'j (1)

Throughout this paper a quantity followed by a comma and an index denotes the
derivatives of the quantity with respect to x or x' with this index as the case may
by. Also when there is a repeated upper and lower index, the one term stands for
the sum of terms as this index takes the values 1 to 4. Thus in equations (1) the
second term stands for the sum of terms as j and k take the values 1 to 4, and in the
right-hand member of the equation as y takes the values 1 to 4.
When we express the condition of integrability of equations (1) and make use of

these equations in the reduction, we obtain'

rwklxjXtS X, =rX,8e

where

kJa, = ,l - r + Fhl1.k - ihk (2)

and similarly for rF. Hence rFk, and rF, are components of a tensor.
When in equation (2) the functions of the form rjk are replaced by the Christoffel


